明日をひらくクリーンエネルギー=天然ガス/メタンハイドレートが裏庭から出たでござる!!

Contents
HOME 埋蔵域
採取方法 課題・懸念事項・歴史
定義 エネルギーの源
特徴 費用・経済効果
エネルギー貯蔵 石油代替エネルギー
[PR]

    メタンハイドレートとは???

    メタンハイドレート(英: methane hydrate)とは、メタンを中心にして周囲を水分子が囲んだ形になっている包接水和物である。低温かつ高圧の条件下で、水分子は立体の網状構造を作り、内部の隙間にメタン分子が入り込み氷状の結晶になっている。石油や石炭に比べ燃焼時の二酸化炭素排出量がおよそ半分であるため、地球温暖化対策としても有効な新エネルギー源であるとされる。化石燃料の一種であるため、再生可能エネルギーには含まれない。

    性状

    見た目は氷に似ている。1 m3のメタンハイドレートを1気圧の状態で解凍すると164 m3のメタンガスと水に変わる。解凍する前のメタンはメタンハイドレートの体積の20 %に過ぎず、他の80 %は水である。分子式は CH4•5.75H2O と表され、密度は0.91 g/cm3である。火をつけると燃えるために「燃える氷」と言われることもある。 水分子で構成される立体網状構造の間隙中にガス分子が位置して安定な固体結晶となっている氷状の物質は「ガスハイドレート・クラスレート」と呼ばれる構造になっている。 ガスハイドレートには、ガスが失われると残された立体網状構造である「包接格子」だけでは格子構造を維持できないもの(ガスハイドレート・クラスレート)と、包接格子だけでも格子構造を維持出来るものがある。メタンハイドレートは「包接化合物」とも呼ばれるクラスレートであり、骨格となる水分子間の5-6 Å(オングストローム、1 Å = 100 pm)程度の隙間に入り込んだガスが出て行くと格子は壊れる。

    生成過程(海底下)

    メタンが海底下で大量に保存されている原因は、無機起源説と、生物起源説に大別される。
    中でも、現在までに報告されているメタンハイドレートを構成するメタンの炭素同位体比は比較的小さい値(13C が少ない)を示しており、これらのメタンは海底熱水系等において確認されている非生物起源のものではなく、堆積物中で有機物の分解によって生じる生物起源のものを主としていると考えられている。

    生物生成メタン

    メタンハイドレートは大陸周辺の海底に分布しており、大陸から遠く離れた海洋の深部に有意な発見はない。それら分布領域における表層堆積物の特徴は、長い運搬過程を経た粒度の小さい砕屑物や鉱物粒子、火山灰などの他に有機物や有孔虫などの生物遺骸が含まれる海底泥質堆積物である。その海底面(表層)では生物活動による土壌が作られ、土壌の上に新たな堆積物が積み重なり海水の比率が減少するとともに堆積物の続成作用が働く環境となる。堆積作用により表層から埋没後しばらくは硫酸還元菌(例えば Archaeoglobus、Desulforudis など)の活動が続き、この活動している地層を硫酸還元帯という。活動時間が長い深部になるほど炭素同位体比は大きい値を示す。硫酸塩の枯渇などにより硫酸還元菌の活動が終わると、メタン生成菌の活動が活発になり、メタンと炭酸水素イオンが生成される。ここでは地層深部の圧密作用を受けメタンや炭酸水素イオンを含む水が上層へ移動し、一定の条件下で水分子のかご構造にメタンが入り込みメタンハイドレートとして蓄積される。このメタン醗酵が発生する層では 13C が炭酸水素イオンに濃縮されるため、メタンの炭素同位体比は軽く(13C が少なく)なる。 熱水噴出孔などでこれらのメタン菌の活動を垣間見ることができる。例えば Methanopyrus やMethanocaldococcus は地底で発生する水素と二酸化炭素からメタンを合成する。この他 Methanocalculus などのメタン菌が油田から得られている。

    熱生成メタン

    更に地中深くなると、地温が上昇するとともに微生物の活動は減少し、有機物は熱によるカルボキシル基が除去される反応によってメタンが生成される。ここでは生成された炭酸水素イオンから炭酸塩物を析出する。これらの炭素同位体比は、硫酸還元帯にみられる有機体と比べ大差がない(近似値を示す)特徴がある。ただし、上記 Methanopyrus の培養の際、高温高圧下(122 °C、400気圧)では炭素同位対比の重いメタンを合成することが報告されており、今後研究の進展しだいでは一部の熱生成メタンの起源について再考される可能性もある。

    安定条件

    ハイドレートの網状構造を維持するためには、環境が低温かつ高圧であることが求められる。地球上では、シベリアなどの永久凍土の地下数100-1000 mの堆積物中や海底でこの条件が満たされ、メタンハイドレートが存在できる。実際にはほとんどが海底に存在し、地上の永久凍土などにはそれほど多くない。またメタンハイドレートを含有できる深海堆積物は海底直下では低温だが、地中深くなるにつれて地温が高くなるため、海底付近でしかメタンハイドレートは存在できない。また、圧力と温度の関係から同じ地温を成す大陸斜面であれば、深くなるほどメタンハイドレートの含有層は厚くなる。これらの場所では、大量の有機物を含んだ堆積物が低温・高圧の状態におかれ結晶化している。 地表の条件では、分解して吸熱反応を起こす。この時生成される水は氷の薄膜を形成するため、メタンハイドレートは常圧下-20 °C程度でも長く保存できる自己保存性を持つ。

    物性

    常温、常圧で無色、無臭の気体。人に対する毒性はない。融点は −183 ℃、沸点は −162 ℃。空気に対する比重は 0.555。 光などの刺激によって励起されハロゲン元素と反応し、水素原子がハロゲン原子に置換される。この反応は激しい発熱反応である。例えば塩素との混合気体を常温中で直射日光に曝すだけで発火する。

    ハイドレートとは

    包接水和物とも呼ばれ、水素結合による水分子のかご状構造の中に他の物質の分子が入り込んだものである。 水・ガス・低温・高圧の四つの条件がそろうと生成する。メタンや二酸化炭素などの気体分子を取り込んだものをガスハイドレートと呼び、特にメタンハイドレートはよく知られる。

    我が国のエネルギー事情

    先進各国の目標に比較して、日本での普及目標量は少なく、長年世界一を保ってきた太陽光発電の年間導入量でもドイツに抜かれるなど、政策の弱さが指摘されてきた。 2008年1月に発表されたクールアース推進構想などを受けて、日本でも温暖化ガスの排出量削減の動きが加速している。2008年6月には福田ビジョンが発表され、2030年までに電力の半分以上を再生可能エネルギーと原子力で供給する目標が示された。「太陽光、風力、水力、バイオマス、未利用のエネルギー」が挙げられている。特に太陽光発電の導入量を40倍に引き上げ、地方におけるバイオマスエネルギーの開発を促進するなどの内容が示されている。これを受けて経済産業省などに於いて普及促進政策の検討が進められた。太陽光発電の普及ペースの急減に対応し、2009年1月、経産省は緊急提言に沿って設備費用の約1割に相当する補助金を開始した(太陽光発電#日本の状況参照)。また2009年2月には環境省によって再生可能エネルギーの普及促進による便益の試算結果が発表された。2030年までに累計25兆円必要だが、累計の経済効果は2020年までに29〜30兆円以上、2030年までに58兆〜64兆円以上になり、また2020年には60万人の雇用を生み出すと推計されている。普及政策としては固定価格買い取り制度の採用を提案した。 このうち太陽光発電については2009年2月24日、経産省より初期投資の回収年数を10年程度に短縮する助成制度の強化が発表された。当初は2010年からの実施予定であったが、経済危機対策、エネルギー政策、地球温暖化対策の観点から前倒しされ、2009年11月1日から開始された。開始時の余剰電力の買い取り価格は1キロワット時あたり48円、エネファームやエコウィルなどの自家発電装置を他に併設して居る場合は39円であり、設置後10年間は同じ価格で買い取られることとなった。後から新規に設置された設備の買い取り価格は、年々引き下げられている。補助金の効果もあり、日本の太陽電池生産量は拡大を再開し、2010年度は関連産業の規模が1兆円を突破した。関連雇用も、4万人を超えたと見られている。 2009年末からは、全量買い取りの導入、および対象を太陽光発電以外にも拡大することが検討されており、検討状況は経産省の専用サイトで公開されている。こうした拡大によって再生可能エネルギーの普及促進が期待されている。各方面の関係者からのヒアリング等を経て、法案(再生可能エネルギー特別措置法案、再生可能エネルギー買い取り法案)は2011年4月5日に国会に提出され、各党による協議・修正を経て、同年8月23・26日、衆参両議院での全会一致の賛成をもって成立した。買取条件などの制度の詳細はまだ決まっておらず、地域経済振興や産業活性化への期待が集まる一方、電力料金の増加への不満、電力会社による受け入れ拒否の可能性に対する不安の声等も聞かれる。一方で制度の導入をにらみ、これまで対象から漏れていた再生可能エネルギー源の事業化や、新たな市場参入、関連投資の拡大等の動きも見られる。買い取り価格の決定時期は、2012年の年明け早々が予定されている。

    ページTOPへ